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Abstract. Heavy right-handed neutrinos are of current interest. The interactions and decay of such neu-
trinos determine their decoupling epoch during the evolution of the universe. This in turn affects various
observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy formation and baryo-
genesis. Here, we consider reduction of right-handed electron-type Majorana neutrinos, in the left–right
symmetric model, by the W+

R W −
R channel and the channel originating from an anomaly, involving the

SU(2)R gauge group, as well as decay of such neutrinos. We study the reduction of these neutrinos for dif-
ferent ranges of left–right model parameters, and find that, if the neutrino mass exceeds the right-handed
gauge boson mass, then the neutrinos never decouple for realistic values of the parameters, but, rather,
decay in equilibrium. Because there is no out-of-equilibrium decay, no mass bounds can be set for the
neutrinos.

1 Introduction

If a see-saw mechanism [1] is to account for left-handed
electron neutrino masses ν sufficiently small to be con-
sistent with current ideas on neutrino oscillations, right-
handed N neutrinos with mass M in the TeV scale come
into the picture [2,3]. High N masses in the range 1–
20TeV, and even higher masses, have been considered in
studies of leptogenesis–baryogenesis [2,4,5] and e−e− col-
lisions [3]. While some studies [5] consider M smaller than
MW , the right-handed WR boson mass, others specifically
use N masses greater than the WR mass [3,6]. As cosmo-
logical and laboratory lower bounds for Z ′, WR masses
are of the order of 0.5TeV, 1.6–3.2TeV, respectively [7],
there is no reason not to consider N masses greater than
the Z ′, WR masses. Cosmological mass bounds for M ,
with M � MW , have been considered in [8–12].

In a recent work [12], (B + L)-violation from an
anomaly, involving the SU(2)R gauge group [2,13,14], was
considered as a generation/reduction channel for N neu-
trinos satisfying M > MW . It was found that this anoma-
lous channel played a role in the decoupling of such neu-
trinos, at least as important as the NN̄ → W+

R W−
R chan-

nel (each of these channels was found to be more im-
portant than the NN̄ → FF̄ channel, F representing a
relevant fermion). Matrix elements for NN̄ → FF̄ and
NN̄ → W+

R W−
R were calculated in [12] from the left–right

symmetric extension [15,16] of the standard model, as an
illustration.
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In the above work [12], the N neutrinos were assumed
to be stable, for simplicity. If, however, the left–right sym-
metric model (L–R model, hereafter) is to be taken as a
serious working basis,N neutrinos cannot be considered to
be stable. Decays involving ν–N mixing, WL–WR mixing,
generation mixing and CP -violating decays have been ex-
tensively studied. The last scenario has been widely used
in generating lepton and hence baryon number from the
decay of Majorana-type N neutrinos [4,5,17–19]. If the N
mass is considered to be greater than the WR mass, then
these decay channels will be marginalised by the channel
N → W+

R + e−. Such a fast decay should have important
effects on decoupling. It is this which is studied in detail in
the present paper. The effect on leptogenesis has already
received considerable attention [20].

The effect of the decay of massive neutrinos on en-
ergy density, nucleosynthesis, the cosmic microwave back-
ground radiation (CMBR), galaxy formation and stellar
evolution has been well studied [21,22]. In these studies,
the decay time was taken to be large (typically, larger than
100–200 s), and the effect of decay at the crucial epochs
was followed. The decay time was chosen greater than the
decoupling time, i.e., it was assumed that the neutrinos
first decoupled, and, then, their cosmological and astro-
physical effects were felt, as a result of subsequent out-of-
equilibrium decay [22]. If a fast decay likeN → W+

R +e− is
considered, the relationship of decoupling and decay may
not be like this, and the two have been considered to-
gether, in the present paper, in one Boltzmann equation.

The plan of the paper is as follows: Sect. 1 is the intro-
duction. In Sect. 2, the thermally averaged NN̄ →
W+

R W−
R annihilation cross-section times relative velocity
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and the thermally averaged decay rate are calculated in
the L–R model, assuming pure Majorana neutrinos. The
anomalous rate per unit volume, used in [12], is slightly
modified to accommodate pure Majorana neutrinos. In
Sect. 3, the Boltzmann equation is written down and
treated approximately to obtain a decoupling criterion.
The possibility of decoupling is investigated numerically.
Section 4 discusses the conclusions.

2 Annihilation, decay, and anomalous
reduction of right-handed neutrinos:
thermal averages in the L–R model

2.1 Summary of relevant features of the L–R model

In the L–R model, there are two doublets, (ν, eL) and
(N, eR), belonging to the representations (1/2, 0,−1) and
(0, 1/2,−1), respectively, of SU(2)L ×SU(2)R ×U(1)B−L,
where the quantum numbers refer to the values of TL, TR,
and B − L respectively. To simplify the issues, only one
generation is considered (the lightest), and N–ν, WL–WR,
and Z–Z ′ mixings are neglected.

The symmetry-breaking from SU(2)L × SU(2)R×
U(1)B−L → SU(2)L × U(1)Y is achieved by means of
a scalar triplet (TL = 0, TR = 1 and B − L = 2) ∆ ≡
(∆++, ∆+, ∆0), putting 〈∆0〉 = vR/

√
2 (chosen real). The

right-handed gauge boson becomes massive due to the
piece of the Lagrangian

L∆W+W − = Dµ∆†Dµ∆, (1)

with Dµ = ∂µ + igT .Wµ + i(g′/2)Bµ. From now on, the
subscript R is dropped except when essential. The Ti form
a 3× 3 representation of the SU(2) generators in a spher-
ical basis. Z ′

µ is defined by

Z ′
µ = (

√
cos 2θ/cos θ)Wµ

3 − tan θBµ. (2)

Equation (1) gives a W mass M2
W = (1/2)g2v2

R and an
interaction

LHW+W − =
√
2gMWW+

µ Wµ−H, (3)

where H(x)/
√
2 = Re(∆0(x))−vR/

√
2, the displaced neu-

tral Higgs field.
Neglecting Z–Z ′ mixing, one gets the Z ′ neutral cur-

rent piece
LZ′

NN̄ = (g/2
√
cos 2θ) cos θN̄γµPRNZ ′

µ. (4)

θ is the weak mixing angle. The required charged current
piece of the Lagrangian is

LW
Ne = (g/

√
2)(N̄γµPReWµ + h.c.). (5)

The Z ′,W+,W− interaction piece is

LZ′
W+W −

= −ig(
√
cos 2θ/ cos θ)[Z ′µ(∂µW

+
ν W ν− − ∂νW

+
µ W ν−

−∂µW
−
ν W ν+ + ∂νW

−
µ W ν+) +

1
2
(∂µZ

′
ν − ∂νZ

′
µ)

×(Wµ+W ν− − Wµ−W ν+)]. (6)

The Majorana mass of N is thought to arise from the
piece

LRR̄∆ = fRTCε(τ/
√
2).∆R+ h.c., (7)

where RT is the SU(2)R doublet (N, eR), C is the charge
conjugation matrix and ε = iτ2. (τ/

√
2).∆ is the matrix(

∆+/
√
2 ∆++

∆0 −∆+/
√
2

)
,

and ε(τ/
√
2).∆ is symmetric. This term gives a Majorana

mass for the N neutrinos, M = fvR/
√
2, so that g/f =

MW /M = rW , and we have the interaction
LNN̄H = (g/

√
2rW )N̄CHN. (8)

NC is the field conjugate to N . It has been pointed out
[19,23] that the effective one-loop mass matrix for multi-
generation unstable Majorana neutrinos is not Hermitian
and, strictly speaking, N 	= NC . But, here, at the level of
tree-order calculations for a single generation, N = NC

will be assumed.

2.2 〈σ|v|〉 for NN̄ → W +
R W −

R

Three amplitudes iMZ′ , iMe, iMH have been considered
for NN̄ → W+W−; these arising, respectively, from

NN̄
Z′
→ W+W− in the s-channel, NN̄

e→ W+W− in the
t-channel, and NN̄

H→ W+W− in the s-channel. Earlier
calculations, with rW 
 1 [9], considered a heavy charged
lepton exchange in the t-channel. In this paper, as required
by the L–R model, an ordinary electron is considered to
be exchanged.

iMZ′ is calculated from (4) and (6), iMe from (5), and
iMH from (3) and (8). One finds that, in the limit M → 0
and s � M2

W , iMe and iMZ′ cancel in tree-order, as ex-
pected. With a massive M � MW , an extra M -dependent
term remains in iMZ′ + iMe. On calculating

∑ |M|2, it
is found that the interference terms between iMH and
iMZ′ + iMe cancel, and for rW 
 1, in the CM frame,∑

|M|2

=
2g4

r4
W

[
1
t2

E2k2 sin2 θCM +
16

M2(s − M2
H)2

E6
]
. (9)

(E,k) is the 4-momentum of the N neutrino in the CM
frame, and θCM the angle of scattering. k has been written
for |k|.

The thermally averaged cross-section times relative ve-
locity is

〈σ|v|〉 = (1/n2
eq)

∫
dπNdπN̄dπW+dπW −

× (2π4)δ4(pN + pN̄ − pW+ − pW −)

×
∑

|M̄|2e−EN /T e−EN̄ /T . (10)

neq is the equilibrium value of the number density n of
the N neutrinos:



P. Adhya et al.: Decay and decoupling of heavy right-handed Majorana neutrinos in the L–R model 185

neq = gN

[
MT

(2π)

]3/2

e−M/T . (11)

gN = 2 for Majorana neutrinos. The measure dπi =
gid3pi/[(2π)32Ei].

∑ |M̄|2 is the spin-averaged matrix el-
ement squared, with symmetry factor 1/2! arising from
the identification N = NC .

The invariant integral
∫
dπW+dπW −(2π)4δ4(pN+pN̄ −

pW+ − pW −)
∑ |M̄|2 is calculated in the CM frame, then

transformed to the comoving “lab” frame, in which N, N̄
have energies EN , EN̄ , respectively, and thermally aver-
aged according to (10). In all calculations, N neutrinos
are non-relativistic, viz. EN = M+k2

N/(2M), k2
N 
 M2.

This is because the interesting region for decoupling stud-
ies of a massive particle has T 
 M.

The result is

〈σ|v|〉 = 1
2!

g4

64πr4
W

[
T

M3 +
16

M2(4− r2
H)2

×
{
1− 3T (4 + r2

H)
2M(4− r2

H)

}]
. (12)

We have written rH = MH/M .
The first term arises from Z ′- and e-exchange, and

apart from the 1/2! factor, agrees with the result of [11],
where the results of [9] have been considered in the limit
s → 4M2. The second term originates from H-exchange.
In the calculation of this term, a further approximation
has been made, viz. 4k2 
 |4M2 −M2

H |, i.e., this calcula-
tion is reliable provided MH is not very close in value to
2M . In [9], the H-exchange contribution was found to be
negligible as s → 4M2, because of a factor (s − 4M2)
which arises for Dirac neutrinos. For Majorana neutri-
nos, this factor is absent, and this term cannot be ne-
glected. As noted earlier, there is no interference between
the H-exchange amplitude and those arising from Z ′- and
e-exchange. In [12], only the first term in (12) was consid-
ered, which is the approximation MH � M .

The processes NN̄ → FF̄ , where F is a relevant
fermion, have not been considered here. For M � MW ,
the contribution of these processes is small compared to
that of NN̄ → W+W− [9], and their effect on decoupling
is overshadowed by the effects of NN̄ → W+W− and the
anomalous reduction of N neutrinos [12].

2.3 Thermally averaged decay width of N neutrinos

The decay width for N → W++e− can be calculated from
(5). Calculation gives the spin-averaged matrix element
squared in the neutrino rest frame

∑
|M̄|2 = g2

[
1
2
Mp+

M(M − p)Mp

M2
W

]
,

with p = (1/2)M(1 − r2
W ) being the momentum of the

decay products, resulting in the width

Γe =
g2M

32π
(1− r2

W )2
(
1 +

1
2r2

W

)
. (13)

In the frame in which the neutrino has energy EN , the
width becomes

ΓE
e = (M/EN )Γe. (14)

The thermally averaged decay width [24,25] is defined as

Γ̄e = (1/neq)
∫

dπNdπW+dπW −

× (2π)4δ4(pN − pW+ − pW −)
∑

|M̄|2e−EN /T

= (1/neq)
∫
(gNd3pN/(2π)3)ΓE

e e−EN /T .

Using (13) and (14), one gets

Γ̄e =
g2M

32π
(1− r2

W )2
(
1 +

1
2r2

W

) (
1− 3T

2M

)
. (15)

The calculation has been done in the approximation T 

M,k2

N 
 M2. For M � M2
W ,

Γ̄e =
g2M

64πr2
W

(
1− 3T

2M

)
. (16)

If the mass of the N neutrino is greater than the ∆+

mass, (7) allows the decayN → ∆++e−. Correspondingly,∑
|M̄|2 = (1/2)f2(M2 − M2

+),

where M+ is the ∆+ mass. In the rest frame of the neu-
trino, this decay width thus turns out to be

Γ+ = (g2/64π)(M2/M2
W )M(1− r2

+)
2, (17)

where r+ = M+/M . There is another Yukawa piece of the
Lagrangian:

LLRΦ =
∑
i,j

(hijL̄iΦRj + h′
ijL̄iτ2Φ

�τ2Rj) + h.c. (18)

The scalar field Φ transforms under the gauge group as
(1/2, 1/2, 0) and is represented by the matrix

Φ =
(

φ0 φ′+
φ− φ′0

)
.

Such pieces have been used in different models to break
CP and induce baryogenesis through leptogenesis [4,5,17–
20]. If one generation is considered, the coupling constant
h contributes to the electron mass and must be very small.
To fit the observed baryon asymmetry, with N mass in
the TeV range, |hij |2 values of the order of 10−10 to 10−13

have been considered [4,5]. In this situation, as CP break-
ing has not been considered here, and only one generation
having been taken into account, it has not been thought
useful to consider N -decays arising from (18). In any case,
it will be found that any enhancement of the decay width
given in (15) and (16) will only strengthen the main con-
clusion of the paper.

2.4 Anomalous generation of Majorana neutrinos

The one generation, sphaleron-mediated, fermion number
violating transition rate per unit volume, with |∆L| = 1,
|∆B| = 1, for the quantum anomaly, involving the SU(2)R
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gauge group, was written, in [12], by extrapolation from
the SU(2)L case [26], as

AR = (1.4× 106)
(
bM7

W

g6T 3

) [
1−

(
T

zMW

)2
]7/2

× exp


−16πMW

g2T

[
1−

(
T

zMW

)2
]1/2


 . (19)

MW is the zero temperature WR mass. z = TR/MW ,
where TR is the critical temperature associated with the
breaking of the SU(2)R gauge symmetry. So, z is essen-
tially a quantity which reflects the uncertainty in the val-
ues of the L–R model parameters, while b captures the un-
certainties involved in the extrapolation from the SU(2)L
to the SU(2)R case in addition to those in the estimation
of the prefactor of the anomaly driven transition [27].

In [12], the anomalous rate of reduction of N neutrinos
was considered, maintaining a distinction between N and
NC . Here, N = NC neutrinos are considered, to maintain
uniformity with the NN̄ → W+W− calculations. This
entails an extra factor of 2, as seen below.

For an anomalous process l, with ∆L = +1, such that

l : i+ j + · · · → N + a+ b+ · · · ,
one writes [12]

Al =
∫

dπNdπadπb · · ·dπidπj · · · |Ml|2(2π)4

× δ4(pN + pa + pb + · · · − pi − pj − · · ·)f eq
N fafb · · ·

= Ilneq, (20)

where Il contains the result of the phase space integra-
tions, apart from neq [24,25], and i, j, · · · a, b, · · · are all
supposed to be in equilibrium.

Taking the view that leptogenesis and baryogenesis are
effects of a smaller order, CP -symmetry is assumed. Then
[12] for each process l, there is a ∆L = −1 process

l̄′ : N + a+ b+ · · · → i+ j + · · · ,
with the same |Ml|2. For this process,

Al̄′ =
∫

dπNdπadπb · · ·dπidπj · · · |Ml|2(2π)4

× δ4(pN + pa + pb + · · · − pi − pj − · · ·)fNfafb · · ·
= Iln (21)

The ∆L = +1 processes, generating N neutrinos, add up
to ∑

l

Al = neq

∑
l

Il =
1
2
AR exp(−βµL/2),

from [26]. µL = µN is the chemical potential (µe = 0, as
electrons are in equilibrium). The 1/2 factor arises from
the assumption [12], that, to a first approximation, the
rate of generation of one member of a lepton doublet may

be taken to be the same as that of the other, near equi-
librium (not a bad condition at decoupling when the neu-
trinos are just falling out of equilibrium). Similarly,

∑
l̄′

Al̄′ = n
∑

l

Il =
1
2
AR exp(+βµL/2).

So, for small µN [26],

neq
∑

l Il ≈ 1
2AR(1− βµN/2),

n
∑

l Il ≈ 1
2AR(1 + βµN/2).

One gets ∑
l

Il = AR/(n+ neq),

and the anomalous rate of reduction of N neutrinos per
unit volume becomes

AN =
∑
l̄′

Al̄′ −
∑

l

Al =
n − neq

n+ neq
AR. (22)

This has an extra factor of 2, compared to [12], because
anti-particle processes, which had to be considered sepa-
rately there, do not appear here, because of the assump-
tion N = NC .

3 Effect of decay on decoupling

3.1 The Boltzmann equation for N neutrinos

Using the results of the last section, one can write the
Boltzmann equation

dn
dt

+ 3Hn = −2〈σ|v|〉(n2 − n2
eq)− 2Γ̄e(n − neq)

−n − neq

n+ neq
AR, (23)

where the second term on the left gives the effect of the
expansion, and the three terms on the right are to be taken
from (12), (16), and (22), respectively. The expression for
the Hubble parameter H is

H = 1.66g�(1/2)T 2/MPl. (24)

g� is taken ≈ 100, and MPl = 1.22 × 1019 GeV. The
factor 2 with 〈σ|v|〉 appears because two neutrinos are
disappearing in NN̄ → W+W−, considering N = NC .
The 2 factor with Γ̄e appears because of the two decay
channels N → W+ + e− and N → W− + e+. Writing
x = M/T and Y = n/s, where s = g�S(2π2/45)T 3, with
g�S ≈ 100, (23) becomes

dY
dx

= −f(x)(Y 2 − Y 2
eq)− d(x)(Y − Yeq)

−g(x)
Y − Yeq

Y + Yeq
. (25)

In (25),
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f(x) =
(
1.41× 1016 GeV

MW

) (a

x

)3

×
[

2x
(1− r2

H/4)2
− h(rH)

]
, (26)

where a = 1/rW = M/MW and

h(y) =
1

(1− y2/4)3

× [
1 + y2 {

(1− y2/8)(1− y2/4) + 5/4
}]

, (27)

d(x) =
(
3.08× 1015 GeV

MW

)
ax

[
1− 3

2x

]
, (28)

g(x) =
(
3.06× 1023 GeV

MW

)
b

a

[
1
u2 − 1

z2

]7/2

× exp

{
−118.98

[
1
u2 − 1

z2

]1/2
}

, (29)

with u = a/x = T/MW .
Writing Y = Yeq + ∆, it is noted that, before decou-

pling, Y is close to Yeq, and ∆′ may be put equal to zero.
Then (25) may be put in the form

∆ =
−Y ′

eq

f(x)(2Yeq +∆) + d(x) +
g(x)

2Yeq +∆

.

From neq in (11), one gets

Yeq = 2.89× 10−3x3/2e−x, and Y ′
eq ≈ −Yeq,

at decoupling, when it is expected that x = xd � 1. The
criterion for decoupling may be taken as ∆ = c′Yeq, where
c′ is of order 1. As in [12], c′ is chosen to be 1. Then the
condition for decoupling is

3f(xd)Yeq(xd) + d(xd) +
g(xd)

3Yeq(xd)
= 1. (30)

This is the key condition in our analysis of decoupling.
Each factor on the lhs of (30) is positive1. So, there is no
possibility for cancellation between different terms. We
will show in the following subsections that, in fact, the
condition can never be satisfied. The argument proceeds
as follows. First, we consider (30), excluding the second
(decay) term in the lhs. We show that there is a value xa,
which we obtain numerically below, such that, for x < xa
or x > xa, the lhs is, respectively, greater or less than unity
in the absence of decay. We then check that for x > xa
the decay term is much larger than unity so that there is
no value of x (= M/T ) for which (30) is satisfied.

1 At first sight it might seem from (26) that the first term
on the lhs of (30) is not always positive. That this is not the
case can be seen by noting that (a) this analysis is valid only
when rH is away from the value 2, and, from (27), (b) h(rH) is
negative for rH > 2 and quickly assumes its asymptotic value
of –2 for rH > 5, and (c) for rH ≤ 1, though h(rH) is positive,
the first term in the square brackets in (26) is dominant for
x � 1 (expected at decoupling)

Table 1. x = M/T at decoupling for different choices of a =
M/MW and rH = MH/M without the inclusion of the decay
contribution in the Boltzmann equation. MW has been chosen
to be 4000GeV

rH = 1 rH = 3 rH = 10
a x a x a x

2 25.79 2 25.06 2 22.30
5 28.49 5 27.74 5 24.89
10 30.54 10 29.77 10 26.86
20 32.60 20 31.81 20 28.83
50 35.32 50 34.52 50 32.18
75 73.77 75 73.77 75 73.77
100 238.83 100 238.83 100 238.83

3.2 Decoupling in the absence of decay

First, d(xd) is omitted, and the decoupling condition

l(x) = 3f(x)Yeq(x) +
g(x)

3Yeq(x)
= 1 (31)

is solved to give x = xa. xa represents the value of M/T
for which decoupling would occur in the absence of decay.

Yeq gives a factor e−x, and so the term with f(x) in-
creases as x decreases. g(x) has an exponential factor of
the form e−Esp/T = e−Kx/a [12,14,26,28,29], where Esp
is the energy of the sphaleron mode which decays to cause
anomalous L generation. The kinematic constraint on N
production, Esp > M, gives K/a > 1 [12] so g(x)/Yeq ∼
e−((K/a)−1)x and this again increases as x decreases. This
means that l(x) > 1 if x < xa. So, x < xa will not satisfy
the decoupling condition (30). Therefore, on the whole,
it may be said approximately [24] that, for x > xa, the
annihilation rate plus the anomalous reduction rate is less
than H.

This programme is followed numerically. First, for def-
initeness, we fix b and z, the two parameters in the expres-
sion for g(x) – see (29) – at the values 1 and 4, respectively
[12]. a is varied from 2–100, for2 rH = 0, 1, 3, 10 and xa
found by solving (31) numerically.

The results for MW = 4000GeV are shown in Table 1
for rH = 1, 3, 10. There is a clear trend, showing an in-
crease in xa for an increase in a (constant rH), and a
decrease in xa for an increase in rH (constant a). The val-
ues for rH = 100 and rH = 1000, we have checked, do not
differ at all. It is safe to say that xa > 20 for the parameter
ranges considered.

We now address the uncertainty regarding the anoma-
lous rate [27]. The uncertainty is embodied in the parame-
ters b and z appearing in the expression for this rate. The
parameter z = TR/MW is of order unity (z = 3.8 in the
SU(2)L case [26]). To gauge the sensitivity of the results
on z, a calculation was made with a = 50 (to give suffi-
cient weight to the anomalous transition factor g(x)) and
rH = 1. xa, obtained by solving (31), was 42 for z = 2,
35.6 for z = 3, and reached an asymptotic value of 35.3
for z ≥ 4. For rH = 10, xa was 42 for z = 2, 35 for z = 3,
and it had an asymptotic value of 31.5. The conclusion

2 h(rH) assumes its asymptotic value of −2 for rH > 5
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Table 2. Effect of uncertainty in anomalous rate on the results
of Table 1

a = 2 a = 50
b x b x

103 22.30 103 36.79
102 22.30 102 35.11
10 22.30 10 33.50
1 22.30 1 32.18

10−1 22.30 10−1 31.60
10−2 22.30 10−2 31.47
10−3 22.30 10−3 31.46

Table 3. Same as in Table 1 but for MW = 2000GeV

rH = 1 rH = 3 rH = 10
a x a x a x

2 26.47 2 25.73 2 22.95
5 29.18 5 28.41 5 25.54
10 31.23 10 30.45 10 27.51
20 33.28 20 32.49 20 29.49
50 36.00 50 35.20 50 32.75
75 75.01 75 75.01 75 75.01
100 242.83 100 242.83 100 242.83

xa > 20 of the last paragraph is not disturbed. In [12],
the uncertainty in b was taken into account by varying it
through six orders of magnitude about b = 1. We do a
similar calculation for z = 4, rH = 10, MW = 4000GeV
and present the results in Table 2. It is clear that even this
large variation of b through six orders of magnitude does
not affect the conclusion of the previous paragraph.

For comparison, the results for MW = 2000GeV, for
the same values of the other parameters, are shown in
Table 3.

The expectation that l(x) – see (31) – decreases below
1, as x increases through xa, was verified numerically for
MW = 4000GeV, and a = 10, 20, 50, 75, for each of the
values rH = 1, 10. Table 4 shows the results for rH = 1, 10,
and a = 10, 50.

3.3 Effect of decay

From the numerical results of the previous subsection it
would be safe to say that for x < 20, l(x) > 1. Now, if one
looks at d(x), see (28), it is clear that, for x > 20, d(x) �
1, and, moreover, as x increases further, d(x) increases.
So, there is no possibility of the decoupling condition (30)
being satisfied.

d(x), of course, has a simple physical meaning. In the
lhs of (23),

dn
dt

+ 3Hn = Hsx
dY
dx

.

Comparing (23) and (25), d(x) = (2Γ̄e/Hx). If d(x) �
1 for x = xa, with xa ∼ 20, this means that Γ̄e � H
at this point. Considering the physical meaning of xa, it
may be concluded that although at temperatures lower
than Ta = M/xa, the annihilation rate plus anomalous

reduction rate falls below the expansion rate, the decay
rate remains much faster than the expansion, and this
prevents decoupling.

In the absence of decoupling, the fast decay constrains
the N neutrino number density to follow the equilibrium
density ∼ e−M/T . There is no out-of-equilibrium decay.

One may check that this conclusion is not an arte-
fact of the approximation M2 � M2

W in the calculations.
Without this approximation, (15) gives the decay rate

Γ̄e =
g2M(a2 − 1)2(a2 + 2)(1− (3/2x))

64πa4 , (32)

so that

d(x) =
(
3.08× 1015 GeV

MW

)

× (a2 − 1)2(a2 + 2)x
a5

[
1− 3

2x

]
. (33)

A simple calculation shows that if d(x) is to be < 1, for
x ∼ 20, then one must have a ∼ 1, to 1 part in 107 (for
MW = 4000GeV). There is no reason for such a fine tun-
ing between the N and W masses.

If theN decay width is augmented by the∆+, e− chan-
nel, i.e., if M > M+,

d(x) =
(
3.08× 1015GeV

MW

) [
(a2 − 1)2(a2 + 2)

a5 + a(1− r2
+)

2
]

×x

[
1− 3

2x

]
. (34)

In this case, if d(x) is to be < 1 for x ∼ 20, with MW =
4000GeV, not only must rW ∼ 1, but also r+ ∼ 1, each
to 1 part in 107; an unacceptable situation.

Clearly, if the decay width is further augmented by
introducing other channels, this will change Γe, but not
the x-dependence of Γ̄e or d(x), so that d(x) < 1 for x ∼ 20
will be an even remoter possibility.

d(x) can be decreased by increasing MW . Taking rH =
1, a little calculation shows that d(x) = 0.999 and l(x) =
0.001 for x = 4.25 and MW = 1.7 × 1016 GeV if a = 2,
and for x = 6.6 and MW = 1.6× 1017 GeV if a = 10.

This scale ofMW agrees with [20] where the decoupling
condition was, however, chosen simply as Γ̄e < H at T =
M , Γ̄e having been assigned the value g2T/8π. In this
paper, we have calculated

Γe =
g2(M2 − M2

W )2(1 +M2/2M2
W )

32πM3 ,

and taken the thermal average of (M/EN )Γe for T <
M . We have used a decoupling criterion which includes
the effect of annihilations and anomalous reduction, for
a wide range of the parameters rH = MH/M and rW =
MW /M . Also, our method of obtaining an approximate
solution of the Boltzmann equation keeps the tempera-
ture of decoupling open and calculable, e.g., in the pre-
vious paragraph it was found that decoupling occurs for
M > 1016, (1017)GeV at T = M/4 (M/6), and not at
T = M .
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Table 4. Behavior of l(x) (31) around xa in the absence of decay. MW = 4000GeV for
this table

rH = 1 rH = 10
a = 10 a = 50 a = 10 a = 50

x l(x) x l(x) x l(x) x l(x)

20 45.23 × 103 30 227.87 20 14.61 × 102 25 13.13 × 103

35 1.09 × 10−2 40 8.70 × 10−3 30 3.67 × 10−2 40 1.51 × 10−4

So, the main point which emerges is that for there to
be decoupling of massive neutrinos in the L–R model, it is
necessary to consider right-handed gauge boson mass val-
ues far above the physically expected L–R mass scale. Fur-
ther, asM = aMW , the see-saw mechanism will, then, give
values of the ν mass, which will be unacceptably small,
when compared to neutrino oscillation values of ∆m2.

4 Conclusions

It is to be concluded that, in the L–R model, with right-
handed neutrino mass greater than the WR mass, even
when the annihilation plus anomalous reduction rate for
these neutrinos has fallen below the expansion rate, the
decay remains faster than expansion, and becomes increas-
ingly faster. So, massive right-handed neutrinos will decay
while remaining in equilibrium.

We find that this is true for a wide range of values of
MW /M and MH/M , and also for a wide allowance of the
uncertainty in the anomalous rate.

As the equilibrium number density varies as e−M/T ,
right-handed neutrinos rapidly dwindle in number once
the temperature falls below their mass. The decay prod-
ucts, with much lower masses, equilibriate immediately.
Hence, there is no question of influencing the present den-
sity of the universe, CMBR, and nucleosynthesis or later
events, and no mass bound can be set for right-handed
neutrinos in the L–R model, if their mass is greater than
the WR boson mass (apart from an upper bound from
unitarity [10,11]).

Because there is no out-of-equilibrium decay, the lep-
ton (and baryon) number generation scenarios, utilising
the decay of massive Majorana neutrinos will not work in
the L–R model if the neutrino mass is greater than the
WR boson mass, a result also previously noted in [20].
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